HyperChem ialah suatu program simulasi dan pemodelan molekular yang memungkinkan perhitungan kimiawi yang kompleks. HyperChem mencakup fungsi-fungsi berikut:
1. Membuat sketsa dwimatra (2D) molekul dari atom-atom penyusunnya, lalu mengubahnya menjadi model trimatra (3D) dengan HyperChem Model Builder.
2. Memilih residu-residu standar secara berurutan dari perpustakaan asam amino dan nukleotida HyperChem/Lite untuk membangun protein dan asam nukleat.
3. Membaca tipe atom dan koordinat molekular yang telah disimpan sebagai arsip HIN (masukan HyperChem yang dibuat sebelumnya) atau arsip ENT (mengambil dari sumber lain, yaitu Brookhaven Protein Data Bank/PDB)
4. Menata kembali molekul, misalnya dengan memutar atau menggesernya.
5. Mengubah kondisi tampilan, termasuk penampakan ruang, model molekul, dan label struktural.
6. Merancang dan melakukan perhitungan kimiawi, termasuk dinamika molekular.
Tersedia berbagai metode mekanika molekular maupun mekanika kuantum (semiempiris atau ab initio). Perhitungan mekanika molekular menggunakan medan gaya MM+, AM-BER, BIO+, atau OPLS, sedangkan mekanika kuantum semiempiris meliputi extended Hückel, CNDO, INDO, MINDO3, MNDO, AM1, PM3, ZINDO/I, dan ZINDO/S.
7. Penetapan efek isotop dalam perhitungan analisis vibrasional untuk metode-metode SCF ab initio dan semiempiris.
8. Membuat grafik Excel dari hasil perhitungan kimiawi.
9. Mensolvasikan molekul dalam kotak periodik.
Jenis Perhitungan dalam HyperChem:
Terdapat beberapa tipe perhitungan, antara lain kalkulasi single point, optimisasi geometri, frekuensi vibrasi, pencarian keadaan transisi, simulasi dinamika molekular, simulasi dinamika Langevin dan simulasi Monte Carlo.
1. Perhitungan single point dapat digunakan untuk menentukan energi molekul dari struktur yang telah ditentukan (tanpa proses optimasi)
2. Perhitungan optimisasi geometri menggunakan algoritma minimisasi energi untuk mendapatkan struktur paling stabil. Tersedia 5 algoritma minimisasi.
3. Perhitungan frekuensi Vibrational dimaksudkan untuk mencari mode vibrasi normal dari suatu struktur teroptimisasi. Spektrum teroptimisasi dapat ditampilkan dan gerakan vibrasi yang berkaitan dengan transisi spesifik dapat dianimasikan.
4. Pencarian keadaan transisi dilakukan dengan menentukan struktur metastabil yang bersesuaian dengan keadaan transition menggunakan metode Eigenvector Followingatau Synchronous Transit. Sifat-sifat molekulernya kemudian dapat dihitung. Dua metode untuk melokasikan keadaan transisi diimplementasikan di dalam HyperChem 5.
a) Metode Eigenvector Following sangat cocok digunakan untuk proses unimolekular atau setiap system molecular yang mode vibrasi naturalnya cenderung menuju ke suatu keadaan transition.
b) Metode Synchronous transit khususnya berguna jika reaktan dan produk sangat berbeda. Terdapat dua metodologi synchronous transit yang diimplementasikan di dalam HyperChem yaitu Linear synchronous Transit (LST) dan Quadratic Synchronous transit (QST).
5. Simulasi Molecular dynamics menghitung trajektori klasik untuk sistem molekular. Waktu pemanasan, keseimbangan dan pendinginan dapat diterapkan dalam simulasi ini dan juga dapat digunakan untuk proses-proses yang bergantung pada perubahan waktu. Simulasi dapat dilakukan pada energi konstan atau temperatur konstan.
6. Langevin dynamics simulations untuk memodelkan efek tumbukan pelarut tanpa memasukkan secara implicit molekul-molekul pelarut.
7. Simulasi Monte Carlo Metropolis berguna untuk mengeksplorasi konfigurasi yang mungkin dari suatu sistem dalam keadaan keseimbangan dan menentukan sifat sistem yang dinyatakan sebagai harga rata-rata untuk sekuruh system yang sudah berada dalam keadaan keseimbangan
Sumber : Prof. Dr. Harno Dwi Pranowo, M.Si
Tidak ada komentar:
Posting Komentar